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Eigenfrequencies of an Elliptic Membrane* 

By B. A. Troesch and H. R. Troesch 

Abstract. The first few eigenfrequencies of a homogeneous elliptic membrane, which is 
fixed along its boundary, are given in a graph. It is explained in detail, how more accurate 
results can readily be obtained for special purposes. The known expansion of the eigenfre- 
quencies for small and large eccentricities are summarized. As an application some nodal 
patterns for a membrane with a double eigenvalue are presented. 

1. Introduction. The free vibrations of elliptic membranes and related problems 
have been investigated extensively since E. Mathieu's work a hundred years ago 
([7], [1] and [3, p. 525], and the references given there). The determination of the 
eigenfrequencies of an elliptic membrane, which is fixed along its boundary, leads 
to the problem of finding the roots of the radial (or modified) Mathieu functions. 
Although these functions have been tabulated in part ([5], [6], [14]), the membrane 
frequencies, especially for the higher modes, are apparently not available in easily 
accessible form [15]. 

It is the purpose of this paper to fill this gap and to present in simple form (see 
Fig. 1) the fundamental and a few higher harmonic frequencies for elliptic membranes 
as a function of the eccentricity. When dealing with Mathieu functions, it is often 
difficult to extract the necessary information quickly from the available literature, 
especially from more than one source, since the notation and the normalization have 
not yet been standardized. For this reason, we present the results in such a way that 
only reference [1] is actually needed. (The only exceptions are the formulas from [8] 
and [9], which are used for the expansions in Sections 5 and 6.) The use of Fig. 1 is 
facilitated by the sketch of the corresponding nodal patterns and the limiting eigen- 
values given in Table 1. Quite on purpose, no scaling of any kind has been introduced. 

The summary of the mathematical background (including the notation) is pre- 
sented in Section 2, following mainly [2]. For the cases where the Fig. 1 does not 
furnish results of sufficient accuracy, the computational method to improve the 
precision is explained in Section 3, and some further details are given in connection 
with Problem 2 in Section 4. 

2. Problem Statement and Notation. The harmonic vibrations of a homoge- 
neous membrane are governed by the reduced wave equation for the small deflection so: 

(2.1) V2s + XAo = 0; 
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and, if the membrane is fixed along its boundary, so is subject to the boundary condi- 
tion 

(2.2) = 0. 

The eigenvalues X = pW2/T depend on the frequency of the free vibration w, the 
density p, and the tension T. 

For elliptic membranes, elliptic coordinates i, n are introduced; they are related 
to the artesian coordinates x', y' by 

(2.3) x ccoshcos, 0-< < c, 0 < 7 < 27r. 
y' = c sinh sin 77, 

The curves t = constant are confocal ellipses with the focal points at x' = ?c. 
(The dashed quantities for the Cartesian coordinates are used here to avoid a possible 
conflict with the meaning of x and y in [1].) 

In elliptic coordinates, Eq. (2.1) becomes 

sate + s,, + (Xc2/2)(cosh 2S - cos 2t7)ep = 0, 

and separation of variables sp = X(Q)Y(-q) leads to the Mathieu differential equation 

(2.4) Y" + (a*-2q cos 2t7) Y = 

(cf. [1, Eq. (2.01)]) and to the modified Mathieu differential equation 

(2.5) X - (a* - 2q cosh 2S)X = 0. 

Here, a* denotes the separation constant and 

(2.6) 4q = XC2. 

The alternate notation in [1] will also be used, namely 

(2.7) s = XC2, 

and we note in passing that this important parameter s is called 4k2 in [8] and 4h2 in [9]. 
The solutions of Eq. (2.4) which are appropriate for our problem must be periodic 

with period ir or 27r, and are called 

(2.8) cem(, q) and sem+i(t, q), m = 0, 1, 2, 

Together with the solutions of the modified Mathieu equation (2.5), the solutions of 

Eq. (2.1) then become 

(2.9) so = CemQ, q)cem(7, q) 

and 

(2.10) so = Sem +1Q(, q)sem+1(71, q) 

for m = 0, 1, 2, * 

If the boundary of the elliptical membrane corresponds to t = ,, its equation 

is (cf. Eq. (2.3)) 

X f2 Y ~~p2 
x2 y2 

2 +2 + 2 2 = 
c2 cosh2 ~ c s inh ~ 
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with the major axis 

(2.11) a c cosht0, 

the minor axis 

(2.12) b = c sinh 4, 

and 
2 2 2 (2.13) c =a b. 

3. The Method of Computation. In this section, the method of finding the 
eigenfrequencies of an elliptic membrane will be outlined. Further details are explained 
in connection with the Problem 2 below. 

If we wish to find the eigenvalues X for one fixed ellipse with axes a and b (c and 4 
are then determined by Eqs. (2.11) to (2.13)), we must compute all q values (see Eq. 
(2.6)) for which the modified, or radial, Mathieu functions Cem(QO, q) or Sem+i(o0, q) 
vanish. In order to obtain the results needed in Fig. 1, it is, however, much simpler 
to reverse the process and to find the roots ~0 of Cer and Sem+, for a given q (or, 
equivalently, a given s), since [1] then furnishes the basic information just in the 
proper form. The functions 

(3.1) Je,(s, x) and Jo,(s, x), 

introduced in [1], where 

(3.2) x = 

are proportional to Ce, and Se, [1, p. xxxviii]. The roots are best found by using 
Eqs. (3.03) and (3.04) (cf. the remark on p. xxi), or for our purpose simply 

00 

(3.3) ?i (1)k De2k+p J2k+p(S1/2 cosh x) = 0, 
k=0 

(3.4) ? (-1) (2k + p)Do2k+PJ 2k+P(S112 cosh x) = 0, 
k=O 

where p = 0, 1, and J are the Bessel functions. Since the coefficients De and Do are 
tabulated in [1] for different values of r, we need not be concerned with the separation 
constant a*. Furthermore, the different normalizations appearing in the literature 
for the radial Mathieu functions can also be ignored for the determination of the 
root t0. 

From the roots s112 cosh i, (now returning to our notation), we find, from Eqs. 
(2.7) and (2.11), 

(3.5) X1/2a = s1/2 cosh ,, 

and 

(3.6) X1/2b = S112 sinh (0 = (Xa2 _ S)12. 

It turns out that this last quantity is well suited for plotting the results as a function 
of the independent variable 
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(3.7) (1 -e2)l/2 = b/a, 

since the X1/2b curves stay finite and have finite slope at the limiting eccentricities 
e = c/a, i.e., at e = 0 and e = 1. Then Fig. 1 gives the eigenvalues for ellipses with 
axes a and b which fall within a certain range. If ellipses with a fixed area A are to 
be compared, then we note that 

(3.8) or (X12 b)2 
A (1 -e21/ 

so that X is constant on parabolas through X1/2b = 0, e = 1, opening to the left. 

E O) CDCz 

I _ 1 0. . . . -e 

9 9 

8 8 

7 B17 

6 6 

5 Co5 

4 ~~~~~~~~~4 

3 ~~~~~~~~~~3 

2 ~~~~~~~~~~~2 

.4 .6 .8 .9 .95 .995 e 

FIGURE 1. The lowest eigenfrequencies of a fixed membrane 
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TABLE 1. Nodal patterns and limits of eigenvalues 

Point I, X"12b = 7r/2 Point II, X1/2b = X 

Mathieu Nodal Mathieu Nodal 
Point X1/2b function pattern function pattern 

F0 8.7715 ~Ce5 Se5 
Eo 7. 5883 Ce4 Seh 
Do 6.3802 Ce3 Se4 

C0 5.1356 Ce2 (DSe2 
Bo 3.8317 Ce1 (DZi Se, 
Ao 2.4048 Ceo CD 

Point III, X1'2b = 37r/2 Point IV, X1/2b = 27r 

E1 11.0647 Ce4 Se4 
D1 9.7610 Ce3 Se3 
C1 8.4172 Ce2 Se2 
BI 7.0156 Ce1 Se, 
Al 5.5201 Ceo 

Point V, X1/2b = 5X/2 Point VI, X1/2b = 37r 

C2 11.6198 Ce2 Se2 
B2 10. 1735 Ce1 Se, 
A2 8.6537 Ce0 

Returning now to the problem of finding the roots of Eqs. (3.3) and (3.4), we 
observe that the well-known recursive computation of the Bessel functions [12] is 
very well suited for our purpose. We need the relation 

Jn-1(S 1/2 COSh t = -1/2ch 
- Jn(S1/2 cosh t) - Jn+1(s /2 cosh t), 

and for the root-finding by Newton's method 

J'(s"2 cosh ) = -- J'(s"2 cosh t) - Jn+1(s / cosh t). 

Further details will be explained in Problem 2 in the next section. 

4. Applications. For the first two problems to be considered, we choose an 
elliptical membrane and compare the following two modes: 
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(a) The mode without a nodal line along the major axis (this leads to the solutions 
Eq. (2.9)), but with three hyperbolas as nodal lines. In Table 1, we find this pattern 
under (Do, I) with the corresponding curve in Fig. 1. 

(b) The mode without a nodal line along the major axis and one elliptical nodal 
line, but no hyperbolas. In Table 1, this pattern is (A1, III). 

Problem 1. For the ellipse with major axis a = 4 and minor axis b = 3, which 
of the two nodal patterns, (a) and (b) above, has the lower eigenvalue X, and what is 
its approximate value? 

Solution. We have b/a = (1 - e2)112 = 3/4. 
From Fig. 1, we conclude immediately, that the mode (A1, III) represents the 

solution, since this curve lies slightly below the curve (DO, I). We also read off that 
;X/b _ 5.25, and hence X 3.06. 

Problem 2. Find the eccentricity e for which the eigenvalues of the two nodal 
patterns above are the same, and determine some nontrivial nodal patterns (cf. 
Figs. 2 to 4). 

Remark. For simple eigenvalues, it is obvious that all nodal lines in an elliptic 
membrane must be (nondegenerate or degenerate) confocal ellipses and hyperbolas. 
For a multiple eigenvalue, any linear combination of solutions of Eq. (2.1) is again 
a solution, and this gives rise to special nodal patterns. Fig. 1 shows that there is an 
abundance of multiple eigenvalues for ellipses. This is in contrast to the circular 
membrane where there exist no multiple eigenvalues except for the obvious double 
eigenvalues. (For a proof of this statement, see [13, p. 484].) Therefore, the nodal 
lines in circular membranes are without exception circular or straight lines. 

Solution. Let us assume here that the eccentricity and the eigenvalue X are 
required to greater accuracy than can be obtained from Fig. 1. The necessary steps 
in the computation are then: 

(1) Fig. 2 shows that the curves (Do, I) and (A,, III) intersect near 

(1 - .73 and X112b = 5.15. 

(2) The approximate value of s then becomes (cf. Eqs. (2.11), (2.13), (3.7)) 

(4.1) s = e2(1 - e2)-1Xb2 23.3. 

This value is not very accurate, as we will see below (s is rather sensitive to errors in 
the eccentricity), but still more than adequate for the following step. 

(3) Next, we compute the roots of Ceo and Ce3 (or Jeo and Je3 in the notation 
of [1]) for s values around the approximate s, and this is carried out for s = 21, 22, 
23, 24, 25, by using Eq. (3.3). 

The coefficients are found in [1], on p. 48 for Ceo, and on p. 93 for Ce3. The ap- 
proximate argument in the Bessel function is (cf. Eqs. (3.5), (3.7)) 

s112 cosh to = a = 2b(l - e2)2 7.05. 

Newton's method applied to Eq. (3.3) gives the values of X1/2 a in two to three itera- 
tions, and, for the set of s values above, the roots turn out to be between 6.9 and 7.2. 
From Eq. (3.6), we obtain 

1/2b = (s cosh2 to -S)1 

and these values are listed in Table 2. 
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TABLE 2. Values of X1/2b for the modes (a) and (b) 

s X1/2b for Ceo = 0 X1/2b for Ce3 = 0 

21 5.167083 5.285691 
22 5.160278 5.221560 
23 5.153762 5.157058 
24 5.147514 5.092291 
25 5.141516 5.027364 

(4) The intersection of the two X1/2b curves is found to be at 

4qO = So = 23.05654, X1/2b = 5.153402 

and the remaining quantities follow easily: 

kX12a= 7.043727, to = .932226, 

b/a = (1 - e2)1/2 = .7316300, e = .6817019. 

(5) In order to find the nodal patterns shown in Figs. 2, 3, and 4, we need the 
four functions Ceo(Q, qo), Ce3(t, qo), ceo(77, qo), ce3(-q, qo) or, since the amplitudes are 
irrelevant, solutions proportional to them. The coefficients De for Ceo and Ce3 are 
interpolated from [1] for the so given above, and the left-hand side of Eq. (3.3) com- 
puted for 0 < t < ~0. The computation of the functions ceo(q, qo), ce,(fl, qo) uses 
the same coefficients (cf. [1, Eqs. (1.6), (1.7)]) 

ceo(-, q) = Ej De2k cos 2kg, ce3(q, q) = E De2k+l cos(2k + l)-. 
k=O k=O 

If we now write the solution of Eq. (2.1) as 

P = Kce3(2, qo)Ce3(Q, qo) + ceo(f, qo)Ceo(Q, qo), 

and find for the assumed constant K the roots so = 0, we obtain the nodal lines. 
The three special patterns in Figs. 2, 3, and 4 are readily found by varying K and 
observing the effect. The six points obtained from the intersections of the nodal lines 
in the modes (a) and (b) do not change with K. The plotting is best carried out by 
using Eq. (2.3). 

FIGURE 2. Example of a nodal pattern for Problem 2 
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FIGURE 3. Example of a nodal pattern for Problem 2 

It can be shown that the special points P in Figs. 3 and 4 occur at 

-1 = 1qo 1.16 and q =7r-q0, 

where tlo is the solution of 

ceO(-OOCe3'(-00)- = ?0 

Problem 3. Find the fundamental eigenvalue X for the ellipse with b = a/2. 
Solution. The fundamental eigenvalue belongs to the root of Ceo or the curve 

(Ao, I) in Fig. 1. For e = 31/2/2 or (1 - e2)112 = we read off 

X1/2 b * 1.9, 

hence (cf. Eq. (4.1)) 

s = 3 b 10.8, 

and, proceeding as above, the results in Table 3 are obtained. 
The result 

1/2a = 3.77715 +t I 10-5 

for e = 3 1/2/2 furnishes the answer to the open entry in [10, p. 6]. 

5. Expansion for Small Eccentricity. For nearly circular membranes, the table 
of coefficients in [1] makes it easy to find the eigenvalues by the general method 

FIGURE 4. Example of a nodal pattern for Problem 2 
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FIGURE 5. X(1 /a2 + 1 /b2)-l for the fundamental eigenvalue of ellipses 

described above. But it is still desirable to have an expansion of the eigenvalues for 
small eccentricity. As it turns out, the trend of the eigenvalues at e = 0 can be described 
very simply, particularly in the variables X112b and e* = 1 - (1 - e2)12 used in 
Fig. 1: 

(a) the slope of all the curves is negative; all the tangents meet at the same point 
on the e*-axis, except for Ce1 and Se,; 

(b) the curvature of all the curves is negative, except for Ce0, Ce1, Se,, Se2, where 
the curvature is always positive; 

(c) for m = 0 and m > 3 the curves for Cern and Sem agree in the first three terms 
(see Eq. (5.1) below). Therefore, more terms would be needed for eccentricities for 
which Cern and Se,, are observed to differ in Fig. 1. 

The expansion for small eccentricity is given in [9, Section 2.85, Eqs. (9) and (10)], 
and reads (in our notation) 

(5.1) s cosh 0o - a = Uk + ClS/Uk + C2s2/uk + 0(sk ) 

for the kth eigenvalue of the radial Mathieu functions Cern and Sern. The constants 
c1 and c2 are listed in [9], and Uk denotes the kth positive root of the Bessel function 
Jm(uk). For m = 1 and m - 2 the constant c2 depends on uk. It is rather straight- 
forward to write Eq. (5.1) in terms of X1/2b and e*. From this form of the result, 
the trends described above then become obvious. An expansion of the fundamental 
eigenvalue to even higher terms is given in [4]. 

6. Expansion for Large Eccentricity. Since the values of the coefficients De and 
Do in [1] do not extend beyond s = 100 (cf. the gaps in Fig. 1), the connection to 
e = 1 (i.e., s = co) is best accomplished by an expansion. Indeed, the expansion below 

TABLE 3. Fundamental X"2a for an elliptic membrane with b = a/2 

s e x1/2a 

9.5 .849864 3.626708 
10.0 .857016 3.689871 
10.5 .863560 3.752341 
11.0 .869566 3.814114 
11.5 .875096 3.875192 
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gives accurate results for s = 100, except for Ce4, Se4, and Ce5, where the error is 
between 1% and 2%. But even then, it is easy to connect the expansion smoothly 
with the numerically computed curves. 

The expansions of the roots of the modified Mathieu functions for large eccentricity 
are known. As a starting point, we choose the formulas in [8, p. 385] (cf. also [9, p. 211, 
p. 213], [11, p. 8]) which read in our notation 

(1 +4s 2m + ) s2 sinh 1m + tan-' sinh 

1/ cosh2 O s12 sinh t?{ Co 2 tan-' sinh sl sinh 0, 

where the upper alternative is valid for Cern, the lower alternative for Sem+.. A reason- 
ably straightforward transformation to an expansion for the kth root in terms of 
(1 - e2)1/2 leads then to 

X1/2b = s112 sinh (k = (k + 2)r + (m + ')(1 -e2)1/2 
m2+m 1 2 

+ m(4 + 1 (1 - e2) + O((1 - e2)3/2) 

for Cem((k, q), and 

X1/2b = s12 sinh (k = kr + (m + )(1 -2)12 

+ m + m + (1 -e2) + O((1 -e )3) 

for Sem+l((k, q). 

Appendices. 
A. A Numerical Approximation for the Two Lowest Eigenvalues. It is sometimes 

convenient to have an approximate formula available for use on a computer. We give 
here possible polynomial approximations for the two lowest modes in terms of 
e*= 1-(1 e2)1/2 

5 

A b2= Z akk(e )k, 
k=O 

where the coefficients are listed in Table 4. 
These approximations are correct at the endpoints and have a maximum relative 

error of about 2. 10-4. 
B. Combinations of Dimensionless Quantities. In [10], G. Polya and G. Szego 

list on pp. 265-270 dimensionless combinations involving the fundamental eigenvalue 

TABLE 4. A polynomial approximation 

Coefficients for a0 a1 a2 a3 a4 a5 

fundamental mode 2.4048 -1.1924 .1768 .3923 -.2107 0 

first harmonic 3.8317 -2.8826 .3897 -.2749 1.1417 -.6348 
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X of a membrane. We have evaluated these combinations numerically, and also the 
combinations multiplied by b/a, where this factor is required to keep the limit e --+1 
bounded. Without exception, the particular combinations change monotonically 
with the eccentricity of the elliptical membrane, and it can be safely conjectured 
that this is indeed the case mathematically. But there exist, of course, less natural 
dimensionless expressions where monotonicity no longer holds. 

Incidentally, one of the combinations is somewhat remarkable in that it stays 
within I% of the value for the circle up to an eccentricity as large as e = .65 (see 
Fig. 5). It is the dimensionless quantity XA/B, or, in the case of ellipses, 

(B.1) X(l/a2 + 1/b2)-l. 

This observation may, however, not be so surprising, if we note [10, p. 99] that the 
expression (B.1) is constant for rectangles of any shape. 
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